Math Lab: Properties of Logs

Estimating Log Values

- 1. Evaluate these logs without using a calculator. $log 1 = ____, log 10 = ____, log 100 = ____.$
- 2. What pattern do you notice?
- 3. Write a rule for this pattern:

$$\log(10^n) =$$

4. Use the pattern to complete the table below.

n	1	2	3	4	5	6	7	8	9
log	1			.602			.845		

	n	10	20	30	40	50	60	70	80	90
1	og n			1.4771		1.699			1.903	

n	100	200	300	400	500	600	700	800	900
$\log n$		2.301				2.778			2.954

5. What pattern do you notice going across each row?

Investigating Properties of Logs

Use your slide rule to complete the equations in the tables below.

$\log 2 + \log 3 =$	$\log 3 + \log 20 =$
$\log 5 + \log 8 =$	$\log 30 + \log 10 =$

- 6. What pattern do you notice in these expressions?
- 7. Write a rule for this pattern:

$$\log_b m + \log_b n =$$

$\log 10 - \log 5 =$	$\log 200 - \log 20 =$
$\log 9 - \log 3 =$	$\log 20 - \log 4 =$

- 8. What pattern do you notice in these expressions?
- 9. Write a rule for this pattern:

$$\log_b m - \log_b n =$$

Use your results from the exercises above to answer the following without using a slide rule.

$\log 7 + \log 7 =$	2 log 7 =
$\log 2 + \log 2 + \log 2 =$	$3 \log 2 =$
$\log 3 + \log 3 + \log 3 + \log 3 =$	4 log 3 =

- 10. What pattern do you notice in these expressions?
- 11. Write a rule for this pattern:

$$n \log_b m =$$

Use Properties of Logs to Evaluate

$$12. \log_{32} 2 + \log_{32} 4 =$$

$$14. \log_{1/2} 3x - \log_{1/2} 6x =$$

13.
$$\ln \frac{1}{e^2} + \ln e^2 =$$

$$15. \ 2\log_2\left(\frac{1}{4}\right) =$$

Extend Your Thinking

16. Use properties of logs to explain why this rule works:

$$\log_{\mathbf{b}}(b^n) = n$$