## Math Lab: Properties of Logs

## Estimating Log Values

1. Evaluate these $\operatorname{logs}$ without using a calculator. $\log 1=$ $\qquad$ , $\log 10=$ $\qquad$ , $\log 100=$ $\qquad$ .
2. What pattern do you notice?
3. Write a rule for this pattern:
```
log}(1\mp@subsup{0}{}{n})
```

4. Use the pattern to complete the table below.

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log n$ |  |  |  | .602 |  |  | .845 |  |  |


| $n$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log n$ |  |  | 1.4771 |  | 1.699 |  |  | 1.903 |  |


| $n$ | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log n$ |  | 2.301 |  |  |  | 2.778 |  |  | 2.954 |

5. What pattern do you notice going across each row?

## Investigating Properties of Logs

Use your slide rule to complete the equations in the tables below.

| $\log 2+\log 3=$ | $\log 3+\log 20=$ |
| :--- | :--- |
| $\log 5+\log 8=$ | $\log 30+\log 10=$ |

6. What pattern do you notice in these expressions?
7. Write a rule for this pattern:

$$
\log _{b} m+\log _{b} n=
$$

| $\log 10-\log 5=$ | $\log 200-\log 20=$ |
| :--- | :--- |
| $\log 9-\log 3=$ | $\log 20-\log 4=$ |

8. What pattern do you notice in these expressions?
9. Write a rule for this pattern: $\log _{b} m-\log _{b} n=$

Use your results from the exercises above to answer the following without using a slide rule.

| $\log 7+\log 7=$ | $2 \log 7=$ |
| :--- | :--- |
| $\log 2+\log 2+\log 2=$ | $3 \log 2=$ |
| $\log 3+\log 3+\log 3+\log 3=$ | $4 \log 3=$ |

10. What pattern do you notice in these expressions?
11. Write a rule for this pattern: $n \log _{b} m=$

## Use Properties of Logs to Evaluate

12. $\log _{32} 2+\log _{32} 4=$
13. $\ln \frac{1}{e^{2}}+\ln e^{2}=$
14. $\log _{1 / 2} 3 x-\log _{1 / 2} 6 x=$
15. $2 \log _{2}\left(\frac{1}{4}\right)=$

## Extend Your Thinking

16. Use properties of logs to explain why this rule works: $\log _{\mathrm{b}}\left(b^{n}\right)=n$
